The $L^p$-$L^q$ Boundedness and Compactness of Bergman Type Operators

نویسندگان

چکیده

We investigate Bergman type operators on the complex unit ball, which are singular integral induced by modified kernel. consider $L^p$-$L^q$ boundedness and compactness of operators. The results can be viewed as Hardy–Littlewood–Sobolev (HLS) theorem in case ball. also give some sharp norm estimates fact gives upper bounds optimal constants HLS inequality Moreover, a trace formula is given.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundedness of the Bergman Type Operators on Mixed Norm Spaces

Conditions sufficient for boundedness of the Bergman type operators on certain mixed norm spaces Lp,q(φ) (0 < p < 1, 1 < q <∞) of functions on the unit ball of Cn are given, and this is used to solve Gleason’s problem for the mixed norm spaces Hp,q(φ) (0 < p < 1, 1 < q <∞).

متن کامل

Boundedness and compactness of weighted composition operators between weighted Bergman spaces

We study when a weighted composition operator acting between different weighted Bergman spaces is bounded, resp. compact.

متن کامل

Lp(R) BOUNDEDNESS AND COMPACTNESS OF LOCALIZATION OPERATORS ASSOCIATED WITH THE STOCKWELL TRANSFORM

In this article, we prove the boundedness and compactness of localization operators associated with Stockwell transforms, which depend on a symbol and two windows, on Lp(R), 1 ≤ p ≤ ∞.

متن کامل

Boundedness and Compactness of Operators on the Fock Space

We obtain sufficient conditions for a densely-defined operator on the Fock space to be bounded or compact. Under the boundedness condition we then characterize the compactness of the operator in terms of its Berezin transform.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Taiwanese Journal of Mathematics

سال: 2022

ISSN: ['1027-5487', '2224-6851']

DOI: https://doi.org/10.11650/tjm/220101